
Distributed Systems && Go
Connor Zanin



/usr/bin/whoami

- Connor Zanin
- Live in Boulder
- Work for Newstore, Inc.
- Presented GoMR, 2020

- https://connorzanin.com
- https://github.com/cnnrznn/raft
- https://github.com/cnnrznn/fake-etcd

https://connorzanin.com
https://github.com/cnnrznn/raft
https://github.com/cnnrznn/fake-etcd


Goal

1. Introduce DS concepts and Raft
2. Show how DS + Go == success
3. Demo the system



Distributed Systems



What is a distributed system?

- Set of machines connected over a network
- Working to some common goal



Distributed systems problems

- Partial failure
- Fault tolerance + recovery
- Synchronization

- Clocks
- State machines
- Order of events

- Vulnerable to CAP (consistency, availability, partitioning)
- Consensus



CAP Theorem



Raft High-Level



What is Raft?

- Consensus protocol
- Replicated Log
- Crash Fault Tolerant (CFT) (fail-stop)

- All nodes follow the protocol or crash
- To tolerate f failures, need 2f+1 nodes

- Leader-Follower protocol (asymmetric)
- “Committed” log entries survive



Uses

- In-memory key-value stores (etcd)
- Distributed configs (Zookeeper, Consul)
- Pub/sub, message queues
- Distributed file systems (GFS)
- Any in-memory fault-tolerant cache



Raft Protocol States

- Normal operation
- System accepts log entries from clients
- Log entries are replicated

- Leader election
- Leader is detected to have failed
- Remaining nodes vote on a new leader



Raft Node States

At any time a node is either a

● Leader
○ Accepts user input and replicates to followers

● Follower
○ Listens for leader heartbeats
○ Replicates log entries
○ Detect leader failure

● Candidate
○ Claim leadership for term i+1
○ Requests votes from other nodes



Normal Operation

https://docs.google.com/file/d/1vtVSf3BZ35v_V62M86Cc0Gs5lq7NWPDk/preview


Leader Election

https://docs.google.com/file/d/1ROX0F92Qn-yR5ej4tZX9GJq3-SLtA3-y/preview


Design and Implementation



Implementation

- Design for a distributed system
- Interesting + key code segments



Design

- Circle == goroutine



Client API

Why does this block?



Run() goroutine

- Same select per role
- Leader & Follower

iteration speed



Message routing



CNET - Simple networking

- Payload agnostic
- Runs in its own goroutine
- Failure agnostic
- Room for optimization



Demos



Demo 1 - ./httpraft

- Code in network send() for delaying messages
- See the protocol updating in realtime



Demo 2 - ./fake-etcd

1. API definition
2. Data store definition
3. Interaction with the raft lib



Want to contribute?

- Log modularity
- Rip it out and give it its own interface
- DB, files, in-memory

- Leader-forwarding
- Forward a request to the current leader on behalf of the client

- Network optimization
- TCP → UDP



Summary

- Raft is a protocol for maintaining a replicated log
- Raft is resilient to crash-faults (fail-stop)
- General approach for DS software design using Go
- Demonstrated ease-of-use with `fake-etcd`


